Classification of matrix product states with a local (gauge) symmetry
نویسندگان
چکیده
منابع مشابه
Entanglement classification with matrix product states
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between ent...
متن کاملMatrix product representation of gauge invariant states in a Z2 lattice gauge theory
The Gauss law needs to be imposed on quantum states to guarantee gauge invariance when one studies gauge theory in hamiltonian formalism. In this work, we propose an efficient variational method based on the matrix product ansatz for a Z2 lattice gauge theory on a spatial ladder chain. Gauge invariant low-lying states are identified by evaluating expectation values of the Gauss law operator aft...
متن کاملStochastic matrix product states.
The concept of stochastic matrix product states is introduced and a natural form for the states is derived. This allows us to define the analogue of Schmidt coefficients for steady states of nonequilibrium stochastic processes. We discuss a new measure for correlations which is analogous to entanglement entropy, the entropy cost S(C), and show that this measure quantifies the bond dimension nee...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولGeometric phases and hidden local gauge symmetry
The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies phys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2017
ISSN: 0003-4916
DOI: 10.1016/j.aop.2017.08.029